Atomic-Scale Structure of the Hematite α-Fe2O3(11̅02) “R-Cut” Surface

نویسندگان

  • Florian Kraushofer
  • Zdenek Jakub
  • Magdalena Bichler
  • Jan Hulva
  • Peter Drmota
  • Michael Weinold
  • Michael Schmid
  • Martin Setvin
  • Ulrike Diebold
  • Peter Blaha
  • Gareth S. Parkinson
چکیده

The α-Fe2O3(11̅02) surface (also known as the hematite r-cut or (012) surface) was studied using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling microscopy (STM), noncontact atomic force microscopy (nc-AFM), and ab initio density functional theory (DFT)+U calculations. Two surface structures are stable under ultrahigh vacuum (UHV) conditions; a stoichiometric (1 × 1) surface can be prepared by annealing at 450 °C in ≈10-6 mbar O2, and a reduced (2 × 1) reconstruction is formed by UHV annealing at 540 °C. The (1 × 1) surface is close to an ideal bulk termination, and the undercoordinated surface Fe atoms reduce the surface bandgap by ≈0.2 eV with respect to the bulk. The work function is measured to be 5.7 ± 0.2 eV, and the VBM is located 1.5 ± 0.1 eV below EF. The images obtained from the (2 × 1) reconstruction cannot be reconciled with previously proposed models, and a new "alternating trench" structure is proposed based on an ordered removal of lattice oxygen atoms. DFT+U calculations show that this surface is favored in reducing conditions and that 4-fold-coordinated Fe2+ cations at the surface introduce gap states approximately 1 eV below EF. The work function on the (2 × 1) termination is 5.4 ± 0.2 eV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3) Surfaces

The reactivity of mineral surfaces in the fundamental processes of adsorption, dissolution or growth, and electron transfer is directly tied to their atomic structure. However, unraveling the relationship between the atomic surface structure and other physical and chemical properties of complex metal oxides is challenging due to the mixed ionic and covalent bonding that can occur in these miner...

متن کامل

Oxygen deficient α-Fe2O3 photoelectrodes: a balance between enhanced electrical properties and trap-mediated losses.

Intrinsic doping of hematite through the inclusion of oxygen vacancies (VO) is being increasingly explored as a simple, low temperature route to preparing active water splitting α-Fe2O3-x photoelectrodes. Whilst it is widely accepted that the introduction of VO leads to improved conductivities, little else is verified regarding the actual mechanism of enhancement. Here we employ transient absor...

متن کامل

Facet-Controlling Agents Free Synthesis of Hematite Crystals with High-Index Planes: Excellent Photodegradation Performance and Mechanism Insight.

Hematite (α-Fe2O3) crystals with uniform size and structure are synthesized through very facile one-pot hydrothermal methods without any additive. The as-synthesized sub-micrometer-sized α-Fe2O3 crystals with small surface areas perform superb visible light photodegradation activities, even much better than most other α-Fe2O3 nanostructures with large surface areas. Profound mechanism analyses ...

متن کامل

Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microwave Method

α-Fe2O3 (hematite) is the most stable iron oxide under ambient conditions. This transition metal oxide has been extensively investigated because it has unique electrical and catalytic properties. In this report, a novel microwave method for preparation of α-Fe2O3 nanoparticles has been developed. The process contained two steps: first, precursor were obtained from a mixed solution of 50 ml of 0...

متن کامل

Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.

We reported a facile adjusted method for the synthesis of high surface area nanorod hematite film as a photoanode for application in water splitting. Crystalline hematite nanorods (EG-α-Fe2O3) are fabricated by electrodeposition in Fe(2+) precursor solution with the addition of ethylene glycol (EG) and followed by annealing at 450 °C. The nanorod hematite film fabricated by the modified electro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2018